
subgroupladders

This package provides an algorithm that
computes a subgroup ladder from a
permutation group up to the parent

symmetric group.

0.1

8 November 2018

Ulli Kehrle

Friedrich Rober

Ulli Kehrle
Email: ulli.kehrle@rwth-aachen.de

Friedrich Rober
Email: friedrich.rober@rwth-aachen.de

mailto://ulli.kehrle@rwth-aachen.de
mailto://friedrich.rober@rwth-aachen.de

Contents

1 Introduction 3

2 subgroupladders 4
2.1 Constructing Subgroupladders . 4
2.2 Computing the Table of Marks . 7

3 License 9

References 10

Index 11

2

Chapter 1

Introduction

This package provides an algorithm that computes a subgroup ladder from a permutation group up to
the parent symmetric group. There is also a function included which computes portions of the table
of marks using subgroup chains. The authors hope that this will someday be extended to use arbitrary
subgroup ladders.

3

Chapter 2

subgroupladders

Solutions of some problems in group theory can relatively easy be transferred to a sub- or supergroup
if the index is small. Let G be a permutation group on the set {1, ...,n}. So one might try to find a
series of subgroups G = H0, ...,Hk = Sn of the symmetric group Sn such that Hi−1 is a subgroup of Hi

for every i and transfer the solution of a problem for the symmetric group step by step to G.
Sometimes it is not possible to find such a series with small indices between consecutive sub-

groups. This is where subgroup ladders may make sense: A subgroup ladder is series of subgroups
G = H0, ...,Hk = Sn of the symmetric group such that for every 1≤ i≤ k, Hi is a subgroup of Hi−1 or
Hi−1 is a subgroup of Hi. So we sometimes go up to a larger group in order to keep the indices small.
A subgroup ladder may look like this:

H8 = Sn

H7

H6

H5

H4

H3

H2

H1

H0 = G

If G is a Young subgroup of Sn, the algorithm in this repository can find a subgroup ladder of G
such that the indices are at most the degree of the permutation group. This algorithm was described
by Bernd Schmalz in [Sch90, Theorem 3.1.1]

2.1 Constructing Subgroupladders

The construction of a subgroupladder is implemented in several stages. The internal functions for
each of these stages are exposed by this package. The main function of the subgroupladders package
SubgroupLadder chains them together in a suitable way:

2.1.1 SubgroupLadder

. SubgroupLadder(G[, refine][, n]) (function)

Returns: A subgroup ladder from G to the symmetric group on the moved points or on [1..n],

4

subgroupladders 5

when n is passed. The output is a list of records with a Group and a LastDirection field. The
LastDirection entry is set to 1, if the last step in the ladder was an up-step, to -1, if the last step was
a down-step and to 0 for the first entry.

Given a permutation group G , this will compute a subgroup ladder from G up to the symmetric
group on the set of moved points of G If the optional third argument n is given, the ladder will be con-
structed up Sn. The optional second argument determines whether this function uses AscendingChain
calls to find additional intermediate subgroup when the index may be large.

This functions embeds G first into the direct product of the induced permutation groups on the
orbits, possible refined using AscendingChain. Then ladders for each of the direct factors are con-
structed and put together yielding a letter up to the Young subgroup corresponding to the orbits.
This then is embedded into the parent symmetric group specified above using Schmalz’s ladder, see
SubgroupLadderForYoungSubgroup. If the transitive constituents are primitive, they will be embed-
ded into the symmetric group on the orbit directly or using AscendingChain, depending on wether
the refine option was used. For more details on the ladder constructed for imprimitive transitive
constituents, see the documentation of SubgroupLadderForImprimitive.

Example
gap> G := Group([(1,2,3),(4,5,6)]);
Group([(1,2,3), (4,5,6)])
gap> SubgroupLadder(G);
[rec(Group := Group([(1,2,3), (4,5,6)]), LastDirection := 0),

rec(Group := Group([(4,5,6), (4,5), (1,2,3)]), LastDirection := 1),
rec(Group := Group([(4,5,6), (4,5), (1,2,3), (1,2)]), LastDirection := 1),
rec(Group := Group([(1,2,3), (1,2), (4,5)]), LastDirection := -1),
rec(Group := Group([(1,2,3,6), (1,2), (4,5)]), LastDirection := 1),
rec(Group := Group([(1,2,3,6), (1,2)]), LastDirection := -1),
rec(Group := Group([(1,2,3,5,6), (1,2)]), LastDirection := 1),
rec(Group := Group([(1,2,3,4,5,6), (1,2)]), LastDirection := 1)]

gap> List(last, x->Order(x.Group));
[9, 18, 36, 12, 48, 24, 120, 720]

Note that the first embedding may produce a large index, even when the group is not maximal in the
direct product of its transitive constituents:

Example
gap> G := Group([(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)]);
Group([(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)])
gap> L := SubgroupLadder(G);;
gap> Order(L[1].Group); Order(L[2].Group);
2
512
gap> L := SubgroupLadder(G, true);;
gap> Order(L[1].Group); Order(L[2].Group);
2
256

2.1.2 SubgroupLadderForYoungGroup

. SubgroupLadderForYoungGroup(G[, n]) (function)

Returns: A subgroup ladder from G to the symmetric group on the moved points or on [1..n],
when n is passed. The output is a list of records with a Group and a LastDirection field. The

subgroupladders 6

LastDirection entry is set to 1, if the last step in the ladder was an up-step, to -1, if the last step was
a down-step and to 0 for the first entry.

Given a Young group G , this will compute a subgroup ladder from G up to the symmetric group of
degree n . If n is given, it cannot be smaller than the largest moved point of G and the symmetric group
is the canonical one acting on {1,. . . ,n}. If the second argument is ommited, n will be the number of
moved points of G and the symmetric group of degree n will act on the moved points of G . We can
guarantee that all the indices are at most the degree n of the permutation group. Details on the ladder
can be found in [Sch90, Satz 3.1.1].

2.1.3 SubgroupLadderForTransitive

. SubgroupLadderForTransitive(G[, refine]) (function)

Returns: A subgroup ladder from G to the symmetric group on the moved points The output is a
list of records with a Group and a LastDirection field. The LastDirection entry is set to 1, if the
last step in the ladder was an up-step, to -1, if the last step was a down-step and to 0 for the first entry.

Let G be a transitive permutaten group. This checks whether the group is primitive or imprimitive
and constructs the ladder by directly embedding or SubgroupLadderForImprimitive respectively
In the first case, the embedding will be refined with AscendingChain if the second argument is true.

2.1.4 SubgroupLadderForImprimitive

. SubgroupLadderForImprimitive(G[, refine]) (function)

Returns: A subgroup ladder from G to the symmetric group on the moved points The output is a
list of records with a Group and a LastDirection field. The LastDirection entry is set to 1, if the
last step in the ladder was an up-step, to -1, if the last step was a down-step and to 0 for the first entry.

Let G be an imprimitive permutation group. First this function embeds G into the smallest canon-
ical wreath product W containg G. Then construct ladder from top group of W into the trivial group.
Using this ladder, we can construct a ladder from the wreath product to its base group by iteratively
replacing the top group with the groups in the other ladder. After that construct a ladder from base
group to the parent symmetric group. The output is the concatenation of these ladders.

2.1.5 WreathProductSupergroupOfImprimitive

. WreathProductSupergroupOfImprimitive(G) (function)

Returns: the smallest nontrivial canonical wreath product containing G
Let G be an imprimitive permutation group. For every block system of G this constructs the

smallest canonical wreath product containing G corresponding to this block system, then this returns
the smallest one in total. For a block system B = {B1, ...,Bk}, G induces a permutation group on B,
denoted by G/B, and the canonical wreath product is

StabG(B1) oG/B∼=
(

StabG(B1)×·· ·×StabG(Bk)
)
oG/B.

2.1.6 YoungGroupFromPartition

. YoungGroupFromPartition(part) (function)

Returns: the young subgroup Sym(p1)x...xSym(pk).

subgroupladders 7

Given a partial partition part = (p1, . . ., pk), this will compute the Young subgroup corresponding
to this partition. Every pi is a list of positive integers such that the union of the pi is disjoint. The
Young subgroup equals the internal direct product of the symmetric groups on the p_i

2.1.7 YoungGroupFromPartitionNC

. YoungGroupFromPartitionNC(part) (function)

Returns: a group
Like the above, but does not tests whether the argument is a list of disjoint lists.

2.1.8 DirectProductPermGroupsWithoutRenaming

. DirectProductPermGroupsWithoutRenaming(list) (function)

Returns: the direct product P.
Constructs a direct product of a list list of permutation groups with pairwise disjoint moved

points such that all embeddings are canonical.

2.1.9 DirectProductPermGroupsWithoutRenamingNC

. DirectProductPermGroupsWithoutRenamingNC(list) (function)

Returns: the direct product P.
Like the above, but does not tests whether the argument is a list of permutation groups with pair-

wise disjoint moved points.

2.1.10 WreathProductWithoutRenaming

. WreathProductWithoutRenaming(basefactor, topgroup, perms) (function)

Construct a wreath product, such that the basegroup is the direct product of the conjugate groups
of basefactors by using perms The top group acts on the basegroup by permuting the factors and
conjugating with the corresponding perms

2.2 Computing the Table of Marks

The table of marks is a concept introduced by Burnside in 1909 in [Bur09] with many applications in
Combinatorics.

Let G be a finite group. Let U1, ...,Un be representatives of the conjugacy classes of subgroups of
G. Then the table of marks of G is the n×n square matrix M where Mi, j is the number of fixed points
of Ui on the right cosets of U j in G.

The complete table of marks can be computed from the subgroup lattice using GAPs builtin
TableOfMarks function. However, one is often interested in small portions of the table of marks,
so we wish to construct an algorithm that efficiently computes sections of the table of marks. As a
right coset U jx is a fixed point in the action of U j if and only if the double coset U jxUi is actually a
right coset, one can compute entries of the table of marks using double cosets. In [Sch90], Schmalz
computes double coset representatives using subgroup ladders. However, the resulting algorithm to
compute the table of marks is not very efficient.

The following method computes entries the table of marks directly just using subgroup chains.

subgroupladders 8

2.2.1 TableOfMarksPartial

. TableOfMarksPartial(list, G[, sikpConjTest]) (function)

Returns: the desired section of the table of marks as a matrix.
Given a group G , this computes the partial table of marks induced by the subgroups of G in

list . It will test the supplied subgroups for conjugacy. Passing false as the optional third argu-
ment skipConjTest will skip this test.

2.2.2 TableOfMarksEntryWithChain

. TableOfMarksEntryWithChain(G, chain, U) (function)

Returns: integer
Internal function called by TableOfMarksPartial, which computes recursively one entry of the

table of marks. Let G be the parent group of the table of marks, i.e. U,V ≤ G, where chain is an
ascending subgroup chain of the form V ≤ . . .≤ B≤ A≤ . . .≤ G. By iteration we compute the fixed
points of R[G : V] with resprect to the action by right multiplication of U .

Chapter 3

License

subgroupladders is free software you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 3 of the License,
or (at your option) any later version. For details, see the file LICENSE distributed as part of this
package or see the FSF’s own site.

9

References

[Bur09] W. Burnside. On the Theory of Groups of Finite Order. Proc. London Math. Soc. (2), 7:1–7,
1909. 7

[Sch90] Bernd Schmalz. Verwendung von Untergruppenleitern zur Bestimmung von Doppelneben-
klassen. Bayreuth. Math. Schr., (31):109–143, 1990. 4, 6, 7

10

Index

DirectProductPermGroupsWithout-
Renaming, 7

DirectProductPermGroupsWithout-
RenamingNC, 7

SubgroupLadder, 4
SubgroupLadderForImprimitive, 6
SubgroupLadderForTransitive, 6
SubgroupLadderForYoungGroup, 5

TableOfMarksEntryWithChain, 8
TableOfMarksPartial, 8

WreathProductSupergroupOfImprimitive, 6
WreathProductWithoutRenaming, 7

YoungGroupFromPartition, 6
YoungGroupFromPartitionNC, 7

11

	Introduction
	subgroupladders
	Constructing Subgroupladders
	Computing the Table of Marks

	License
	References
	Index

